Bridging Many-Body Quantum Physics and Deep Learning via Tensor Networks
نویسندگان
چکیده
The harnessing of modern computational abilities for many-body wave-function representations is naturally placed as a prominent avenue in contemporary condensed matter physics. Specifically, highly expressive computational schemes that are able to efficiently represent the entanglement properties which characterize many-particle quantum systems are of interest. In the seemingly unrelated field of machine learning, deep network architectures have exhibited an unprecedented ability to tractably encompass the convoluted dependencies which characterize hard learning tasks such as image classification or speech recognition. However, theory is still lagging behind these rapid empirical advancements, and key questions regarding deep learning architecture design have no adequate theoretical answers. In this paper, we establish a Tensor Network (TN) based common language between the two disciplines, which allows us to offer bidirectional contributions. By showing that many-body wave-functions are structurally equivalent to mappings of convolutional and recurrent networks, we construct their TN descriptions in the form of Tree and Matrix Product State TNs, respectively, and bring forth quantum entanglement measures as natural quantifiers of dependencies modeled by such networks. Accordingly, we propose a novel entanglement based deep learning design scheme that sheds light on the success of popular architectural choices made by deep learning practitioners, and suggests new practical prescriptions. In the other direction, we identify that an inherent re-use of information in state-of-the-art deep learning architectures is a key trait that distinguishes them from TN based representations. Therefore, we suggest a new TN manifestation of information re-use, which enables TN constructs of powerful architectures such as deep recurrent networks and overlapping convolutional networks. This allows us to theoretically demonstrate that the entanglement scaling supported by state-of-the-art deep learning architectures can surpass that of commonly used expressive TNs such as the Multiscale Entanglement Renormalization Ansatz in one dimension, and can support volume law entanglement scaling in two dimensions with an amount of parameters that is a square root of that required by Restricted Boltzmann Machines. We thus provide theoretical motivation to shift trending neural-network based wave-function representations closer to state-of-the-art deep learning architectures.
منابع مشابه
Deep Learning and Quantum Entanglement: Fundamental Connections with Implications to Network Design
Formal understanding of the inductive bias behind deep convolutional networks, i.e. the relation between the network’s architectural features and the functions it is able to model, is limited. In this work, we establish a fundamental connection between the fields of quantum physics and deep learning, and use it for obtaining novel theoretical observations regarding the inductive bias of convolu...
متن کاملQuantum-chemical insights from deep tensor neural networks
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observabl...
متن کاملHand-waving and Interpretive Dance
The curse of dimensionality associated with the Hilbert space of spin systems provides a significant obstruction to the study of condensed matter systems. Tensor networks have proven an important tool in attempting to overcome this difficulty in both the numerical and analytic regimes. These notes form the basis for a seven lecture course, introducing the basics of a range of common tensor netw...
متن کاملHand-waving and interpretive dance: an introductory course on tensor networks
The curse of dimensionality associated with the Hilbert space of spin systems provides a significant obstruction to the study of condensed matter systems. Tensor networks have proven an important tool in attempting to overcome this difficulty in both the numerical and analytic regimes. These notes form the basis for a seven lecture course, introducing the basics of a range of common tensor netw...
متن کاملFaster identification of optimal contraction sequences for tensor networks.
The efficient evaluation of tensor expressions involving sums over multiple indices is of significant importance to many fields of research, including quantum many-body physics, loop quantum gravity, and quantum chemistry. The computational cost of evaluating an expression may depend strongly on the order in which the index sums are evaluated, and determination of the operation-minimizing contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018